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ABSTRACT The present piece is not a research paper on actuarial sciences, nor intends to be one. It
represents the written form of a workshop that the author gives to his students from a first course on Risk
Theory when teaching the topic of compound-type random variables under the assumptions of the model of
collective risks. All the statistical hypotheses made here were specifically conceived for this presentation and
should be carefully analyzed in any real-world application.
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1. INTRODUCTION/WARNING

The purpose of this paper is to present an exercise on the
model of collective risks as introduced in Chapter 17 from
the book by Promislow (2015) (see also Chapter 12 in the
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book by Bowers et al. (1997)). Concretely, we assume the
usual hypotheses on the model and aim for the Poisson-
compound-Gamma random variable of aggregate claims,
as referred to in the books by Klugman et al. (2019) and
Stoltzfus and Dalton (2010).

This document is addressed to an actuarial audience
that enjoys superhero films and comic books. Therefore,
we strongly recommend the reader to watch Man of Steel,
by Roven et al. (2013); The Avengers, by Feige (2012); and
Captain America: Civil War, by Feige (2016) before read-
ing this paper. Moreover, we caution the reader that we
will extensively utilize the resolutions of the movies men-
tioned above. For this reason, consider this paragraph a
spoiler alert.

The remainder of the paper is divided as follows. The
next section presents a hypothetical argument between
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two superheroes about the monetary costs of their ac-
tions. Then, in section 3, we discuss the typical rationale
given for the disagreements that cause the superheroes
to clash with one another, and we also devise an (expen-
sive) alternative for their conflict. Section 4 provides yet
another (actuarial) possibility, along with its numeric im-
plementation. Finally, section 5 gives our conclusions
and poses a question regarding a typical extension of the
material presented here. Appendices A and B give de-
tails on the Gamma and Negative Binomial distributions,
respectively. If the reader intends to see the assumptions
of the model of collective risks, its implementation on a
spreadsheet program, and the computation of its expec-
tation and distribution function, we would recommend
they go straight to sections 4 and 5.

2. A MULTIVERSAL DEBATE

“Time. Space. Reality. It is more than a linear path. It’s
a prism of endless possibility. Where a single choice
can branch out into infinite realities, creating alternate
worlds from the ones you know. Each is a reflection of
what could have been. Some heroes will rise, others will
fall. And nothing will be the same. I am the Watcher. I am
your guide through these vast new realities. Follow me
and dare to face the unknown, and ponder the question...
What if?”. Uatu, the Watcher in the What if? series by
Bradley (2021). See figure 1.

Figure 1 The Watcher, as depicted by (Byrne 2005, p.46).

What if there was a crossover universe such that, in
the aftermath of the events shown in Man of Steel and The
Avengers, Superman asked Tony Stark if it was necessary
to have six Avengers fighting the Chitauri army in the

third act of the movie? (After all, Kal-El defeated several
Kryptonians single-handedly in his film.) Tony, being an
expert debater, would then argue that they needed only
two Avengers, while the remaining four would limit the
destruction of the city to a few blocks2. See figure 2.

Figure 2 Steel meets Iron in an interesting debate. Mod-
ified version of the fanart by Pearsall (2015).

After saying this, Mr. Stark would inquire the Last Son
of Krypton about the devastation he caused to the city of
Metropolis in Man of Steel. Indeed, according to Zakarin
(2013), about 129,000 people lost their lives, 250,000 peo-
ple went missing, and a million people got injured during
Superman’s heroic deeds. In the aforementioned article,
the author explicitly compares the impact on Metropolis
to that of Fat Man on Nagasaki, Japan during the bombing

2 A careful analysis of the sequence under scrutiny yields that there were
always two Avengers fighting the alien army on top of the skyscrapers,
but they alternated this task with those of containing the wrecking of
the city and saving human lives.
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of August 9, 1945. Monetarily, Clark Kent’s superheroic
actions exceed USD750 billion only in physical damage3,
and the overall cost of the catastrophe endured by the
city of Metropolis exceeds two trillion USD.

3. SOKOVIA ACCORDS II

According to Rosza et al. (2016), Captain America: Civil
War explores the internal conflict that arises among the
Avengers when the United Nations proposes a system of
accountability to address the potential collateral damage
caused by their actions. This initiative leads to the signing
of the so-called Sokovia Accords by the world’s govern-
ments. The resulting status quo creates a deep rift within
the team: Captain America argues that superheroes must
remain free to act without governmental control, while
Iron Man firmly supports regulation and oversight. In
the comic book version by Millar et al. (2007), the sto-
ryline centers on the U.S. government’s enactment of a
Superhero Registration Act, which requires super-powered
individuals to operate under official regulation, much
like members of law enforcement. See figure 3.

Figure 3 The disagreement among the heroes due to a
political action leads to a confrontation. Source material
original from the works of Feige (2016) (above), and
Millar et al. (2007) (below).

In both its representations (film and comic book), Mar-
vel’s Civil War is, by no means, the only example of an
event where an institutional prohibition spawns a con-
flict between paladins of justice. The works by Moore
et al. (1986); Miller et al. (1986); Walker (2004); Gordon

3 Other comparisons offered by Zakarin (2013) are the estimated costs of
the physical damages caused by The Avengers to Manhattan, and by the
events of 9/11 to the United States of America. That is, USD160 billion,
and USD55 billion, respectively.

et al. (2009) and Roven and Snyder (2016) are other well-
known cases of the same situation. See figures 4-5.

Figure 4 The Watchmen series is so influential, it con-
tinues to affect pop culture even nowadays. These im-
ages are original from the works by Moore et al. (1986)
(above) and Gordon et al. (2009) (below).

Figure 5 The film Batman v Superman: Dawn of Justice
is heavily inspired (among others) by the comic book
series Batman: The Dark Knight Returns. These images
are original from the works by Miller et al. (1986) (left)
and Roven and Snyder (2016) (right).



Say the governments of the world agree to have the
superheroes registered using what we could dub as the
Sokovia accords II. In view of the previous discussion, we
could expect to have a face-off between factions of heroes.

An (expensive) alternative
The governments of the world would, of course, look
to prevent losing human lives. But they would also try
to save money! A possibility to avoid the confrontation
among our champions could arise from the following
crossover conversation between Batman (BM) and Iron
Man (IM). (See figure 6.)

BM– Hey, Tony! Would you be willing to cover the ex-
penses for the first USD350 billion per event?

IM– Sure, Bruce! But only if you agree to pay for the
casualties from USD350 billion to one trillion dollars.
What do you say?

BM– Sounds good. Do you think the governments of the
world would agree to cover the costs in excess of one
trillion?

Figure 6 Batman and Iron Man talking about things.
Image obtained from 9gag.com.

The answer to the final question displayed in the last
paragraph depends, of course, on the probability that the
governments of the world end up putting money of their
own. However, a drawback of the proposed solution is
that it would turn the (exciting) battles displayed in fig-
ures 2, 3 and 5 into the (not-so-exciting) battle displayed
in figure 7.

Figure 7 Not even the wealthiest noblest heroes should
go against their own wealth. Image obtained from hu-
morgeeky.com

Imagine that an actuary overhears the talk between
BM and IM. You will surely agree that our heroes could
turn to an insurance company to take on their respective
risks. The following section delves into the details of
the computation of the expected costs for all three of our
protagonists4: Tony Stark, Bruce Wayne, and the govern-
ments of the world, and their respective probabilities of
ending up paying more than those numbers.

4. THE WRIGHT ALTERNATIVE

Let N be a random variable with support on the set
{0, 1, ...}. We will use N to describe how many casual-
ties are linked to the superheroic actions of our clients,
and call it a frequency random variable. On the other hand,
define Xi as the non-negative random variable that mea-

4 A more appropriate term would be agents, and in the case that they
signed insurance contracts, they would become policyholders.
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sures how much the i-th claim costs, for i = 1, 2, ... More-
over, we assume the following hypotheses (see Chapter
17 in the book by Promislow (2015), and Chapter 12 in
the book by Bowers et al. (1997)).

H1. The sequence of severity random variables (Xi : i =
1, 2, ...) is independent of the frequency random vari-
able N.

H2. The random variables follow a common distribu-
tion law, say FX . We say that X is a severity random
variable.

H3. The random variables Xi and Xj are pairwise inde-
pendent for i, j = 1, 2, ... and i ̸= j.

Define now the random variable of aggregate claims S as

S :=

{
0 if N = 0,
X1 + · · ·+ XN if N > 0.

(1)

The theorem of total probability
In the context of our assumptions, it is not hard to prove
that

ES = EX · EN. (2)

Indeed, using the theorem of nested expectation (see, for
instance, formula (2.2.10) in the book by Bowers et al.
(1997)), we see that:

ES = E[E(S|N)]

= 0 · P(N = 0) +
∞

∑
n=1

E

[
N

∑
k=1

Xk|N = n

]
P(N = n)

= 0 +
∞

∑
n=0

E

[
n

∑
k=0

Xk

]
P(N = n)

=
∞

∑
n=0

[
n

∑
k=0

EXk

]
P(N = n)

=
∞

∑
n=0

[
n

∑
k=0

EX

]
P(N = n)

=
∞

∑
n=0

nEXP(N = n)

= EX
∞

∑
n=0

nP(N = n) = EX · EN.

The second equality is just an application of (1) and the
theorem of total probability; the third equality above
holds because of the independence between N and the
sequence of severity random variables (Xi : i = 1, 2, ...)
referred to in H1. The fifth equality is true because the
severity random variables follow the common distribu-
tion of the random variable X (recall assumption H2).

As for the variance of the random variable of aggre-
gate claims, note that

varS = ES2 − (ES)2. (3)

Now, an application of the theorem of total probability
and (1) yield

ES2 =
∞

∑
n=0

E
[
S2|N = n

]
P(N = n)

= 0 · P(N = 0) +
∞

∑
n=1

E
[
S2|N = n

]
P(N = n).

Now, since

E
[
S2|N = n

]
= var(S|N = n) + [E(S|N = n)]2,

we can write

ES2 =
∞

∑
n=1

(
var(S|N = n) + [E(S|N = n)]2

)
P(N = n)

=
∞

∑
n=1

var

(
n

∑
k=1

Xk

)
+

[
E

(
n

∑
k=1

Xk

)]2
P(N = n)

=
∞

∑
n=1

 n

∑
k=1

varXk +

[
n

∑
k=1

EXk

]2
P(N = n)

=
∞

∑
n=1

(
nvarX + (nEX)2

)
P(N = n)

= varX
∞

∑
n=1

nP(N = n) + (EX)2
∞

∑
n=1

n2EN

= varX · EN + (EX)2EN2. (4)

The second equality above follows from H1; the third,
from H3; and the fourth, from H2. Substituting (2) and
(4) into (3) gives us

varS = varX · EN + (EX)2 · EN2 − (EX · EN)2

= varX · EN + (EX)2
(

EN2 − (EN)2
)

= varX · EN + (EX)2varN. (5)

We can use the theorem of total probability again to find
the cumulative distribution function of the random vari-
able of aggregate claims:

P(S ≤ s) =
∞

∑
n=0

P(S ≤ s|N = n)P(N = n)

=
∞

∑
n=0

P

[
n

∑
k=0

Xk ≤ s

]
P(N = n) (6)

=
∞

∑
n=0

F∗n
X (s)P(N = n), (7)



where, if n > 0, we let F∗n
X (·) denote the cumulative

distribution function of the n-th convolution of the in-
dependent and identically random variables X1 + X2 +
· · ·+ Xn; otherwise, F∗n

X (·) = 0. As was the case with (2),
(6) holds by H1. On the other hand, (7) is true because of
H2 and H3.

A very popular choice for modeling the random vari-
able of aggregate claims under assumptions H1-H3 is the
model introduced by Wright (1990), where the frequency
random variable follows a Poisson distribution, and the
severity is a Gamma-like random variable5. (For more on
the Gamma distribution, see Appendix A and appendix
A.3 in the book by Klugman et al. (2019).)

Spreadcheat ing
For illustrative pruposes, but in line with the figures
given by Zakarin (2013), let us assume that the Poisson
parameter for the frequency distribution of the group of
heroes is λ = 7, while the shape and scale parameters for
their severity distribution are α = 18 and θ = 6. Since
EN = λ = varN, and by (2) and (16), this results in an
expected loss of

ES = 18 × 6 × 7 = 756. (8)

Turning to (5) and (17), also see that

varS = (18 × 62) · 7 + (18 × 6)2 · 7 = 86, 184. (9)

We will use the conversation between IM and BM to split
the expected loss displayed in (8) into the three agents
mentioned before: Iron Man, Batman, and the govern-
ment of the world. To do this, we open our favorite
spreadsheet program and use the first two rows from the
worksheet to record the frequency mass function. See
figures 8-10.

The Poisson random variable has an infinite support.
One way to work with such a class of distributions is to
truncate the support whenever the cumulative distribu-
tion function approaches the unit within a certain toler-
ance level. Figure 9 illustrates this idea to the tolerance
level customized in our spreadsheet package.

We now use the first column to keep track of the values
in the support of the random variable of aggregate claims.
Each unit represents one billion dollars6. To know where
5 According to Stoltzfus and Dalton (2010), in a Gamma-like model, the

standard deviation is proportional to the mean. See page II-67 in their
book.

6 Note that this stepsize is gargantuan. It is not common at all to use
numbers of this sort as stepsizes. However, we do it here to dramatize
the illustration. In a real-life application, it is more common to use
smaller stepsizes. However, the main point here is the fact that the sums
(resp. integrals) of the mass (resp. cumulative distribution) functions
add-up to one.

Figure 8 Actually, the prompt POISSON.DIST(B1,7,1)
does not yield the Poisson mass function at B1 = 0
with mean λ = 7, but the cumulative distribution
function at B1 = 0 with mean λ = 7. The mass function
at B1 = 0 with mean λ = 7 is given by the syntax
POISSON.DIST(B1,7,0). We will revise this situation
later.

Figure 9 Drag the formula from cell B2 until you get a
result of 1. Depending on the customized precision of
your spreadsheet program, this will happen at x = 21
or x = 27.

Figure 10 Change the final argument in the
prompt from figure 8 so that the formula
POISSON.DIST(B1,7,0) is displayed in all the cells
from the second row.
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to truncate the (infinite) support of the random variable
of aggregate claims, we turn to Chebyshiov’s inequality
(see Chapter II.4.4 in the book by Mood et al. (1974)):

P
(
|S − ES| ≤ k

√
varS

)
≤ 1

k2 for k > 0.

Then we know the truncation point s∗ must be at least
equal to

ES + k
√

varS = 756 + k
√

86, 184
≈ 756 + 293.5711157k (10)

to bound the error in our estimation of P(S ≤ s∗) by 1/k2.
Since we will not tolerate an error larger than 1/100, we
set k = 10 in (10) and obtain s∗ > 3691.711157. See figure
11.

Figure 11 We use the first column to record the values
in the support of the random variable of aggregate
claims S.

We will use the remainder of the columns to keep
track of the conditional probability of the random variable
[S|N = n], where n appears at the first row of the spread-
sheet. With this in mind, column B will display condi-
tional probabilities of the random variable [S|N = 0],
column C will show conditional probabilities of the ran-
dom variable [S|N = 1], column D will show conditional
probabilities of the random variable [S|N = 2], and so
on, until column AC, where we will place the conditional
probability of the random variable [S|N = 27].

We start by recording the mass function of the random
variable [S|N = 0]. Note that, in the present context, it is
impossible for S to be greater than zero if N = 0. Then,
we type a one, and many zeroes in column B. See figure
12 (the symbol χA(s) stands for an indicator function of
the set A evaluated at s).

To compute the conditional density function of the ran-
dom variable [S|N = 1], we note that, by assumption H1,
this is just the density function of the random variable of

Figure 12 The conditional mass function of the random
variable [S|N = 0] is given by P(S = s|N = 0) = χ0(s).

aggregate claims S. However, we note that, by theorem
A.2, it is also a Gamma random variable with shape pa-
rameter equal to n × α = 1 × 18, and shape parameter of
6. Thus, we input the prompt

=DISTR.GAMMA.N($A3,C$1*18,6,0)

into cell C3 and drag the result all the way down (at least
up to s∗ = 3692). See figure 13.

Figure 13 Observe we are no longer recording a mass
function, but a density function. Moreover, we are fix-
ing the column in the first argument of the prompt; and
the row, in the second. Our purpose is to drag this for-
mula down, but also to the right.

To generate the rest of the conditional density func-
tions, we select the range with the conditional density
function of the random variable [S|N = 1] (i.e. in our
case, range C3:C37427), copy it, and paste it in the range
D3:AC3. See figure 14.

Yet another application of the theorem of total prob-
ability gives us the density function of the random vari-
able of aggregate claims, along with the point of mass

7 Note that we selected an endpoint of the support of the random variable
of 3739 > 3691.71157 = s∗ . Indeed, the 3742nd row corresponds to a
value of 3739 in the support of S.



Figure 14 Uatu the Watcher (as depicted by Byrne
(2005)) tells us how to compute the conditional den-
sity functions for the random variables [S|N = n], with
n = 2, ..., 27.

at s = 0. (For example, (7) gives us the cumulative dis-
tribution function of the random variable of aggregate
claims evaluated at s.) Figure 15 shows how to obtain
fS(1) = ∑∞

n=0 f[S|N=n](1)P(N = n). This number rep-
resents the density of the random variable S evaluated
at 1. The entry in cell AD3 represents the probability that
P(S = 0).

Figure 15 The blue range represents the mass function
of the random variable for the frequency N, while the
red range represents the mass function of the condi-
tional random variable [S|N = 0], and the density
function of the conditional random variable [S|N = n]
for n = 1, ... Note, however, that only the entry in the
cell AD3 represents a probability, the remainder of the
entries in column AD stand for densities.

Column AD represents the mass/density of the mixed-
type random variable of aggregate claims S. Figure 16 is
its geometric depiction.

As a means of verification, now we use the entries
of range AD3:AD3742 to approximate the mean of the
random variable of aggregate claims S from (8). To do
this, we compute the product of the values in the support

Figure 16 Note that the point of mass at s = 0 is iso-
lated from the rest of the points.

of S, with the mass/densities from column AD3:AD37428.
We use the cell AD1 to this end. See figure 17.

Figure 17 Our approximation should be very close to
ES = 756.

Now, we approximate the expected losses of each
agent. To do Iron Man’s, we use column AE to keep track
of his losses as a function of the support of the random
variable S. Since his limit of responsibility is 350 billion dol-
lars, we use the original support of the random variable
of aggregate claims and input the prompt

=IF(A3<=350,A3,350)
8 This is an approximation of the expectation from (8): we are doing

0 × P(S = 0) +
∞

∑
s=1

s fS(s),

when we should be doing

ES = 0 × P(S = 0) +
∫ ∞

0
s fS(s)ds.

The reason for this is that the sum in the former expression is a Riemann
approximation (with unitary stepsize) to the integral in the latter.
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in cell AE3 and press “Return”. Then we double-click in
the right-hand-side corner of the cell AE3. See figure 18.

Figure 18 We place the support of the random variable
of Iron Man’s expenses in column AE.

Next, proceed as in the computation shown in figure
17. This will generate the expected loss of Iron Man9. See
figure 19.

Figure 19 The result should be close to 343.2994774.
Do you think Iron Man will choose to pay this much
instead of risking paying up to 350 billion USD?

To calculate Batman’s expected loss, we start by con-
sidering the support of the share of the risk he is taking
on. To this end, use column AF and record the support by
prompting

=IF(A3<=350,0,IF(A3<=1000,A3-350,650))

in cell AF3 and press “Return”. Then we double-click in
the right-hand-side corner of the cell AF3. See figure 20.

We compute Batman’s expected loss by approximat-
ing the corresponding Riemann sum using the prompt
displayed in figure 21.

We complete our analysis by computing the expected
loss of the governments of the world. We use an anal-
ogous approach to the ones we used in figures 18-19

9 Recall that this approach works only because we are approximating a
Riemann sum.

Figure 20 We place the support of the random variable
of Batman’s expenses in column AF. One way to see
why we typed in that particular prompt is: what is the
payment issued by the Dark Knight when the overall
expenses are below 350 billion?, and what if the overall
expenses are between 350 billion and one trillion? What
happens after one trillion dollars?

Figure 21 The result should be close to 374.8962607. Do
you think Batman will choose to pay this much instead
of risking covering the expenses that exceed 350 billion,
and up to one trillion?

and 20-21. Figure 22 displays our results. Do you
think the governments of the world would agree to pay
37.80425635 billion instead of risking covering the ex-
penses that surpass one trillion dollars?

Is it expensive?
The last subsection concluded with three questions:

• Do you think Iron Man will agree to pay 343.2994774
instead of risking paying up to 350 billion USD?

• Do you think Batman will agree to pay 374.8962607
billion instead of risking covering the expenses that
exceed 350 billion, and up to one trillion USD?

• Do you think the governments of the world will
agree to pay 37.80425635 billion instead of risking
covering the expenses that surpass one trillion dol-
lars?



Figure 22 This is the summary of two steps: the
computations of the support of the risk share
taken on by the governments of the world, and
the Riemann sum corresponding to the expected
loss of such a random variable. Note the use
of the prompts =IF(A3>1000,A3-1000,0) and
=SUMPRODUCT(AG3:AG3742,AD3:AD3742) in cells AG3
(and below), and AG1, respectively. Can you guess what
is the sum of the numbers from the entries in range
AE1:AG1? (Hint: recall figure 17.)

Attemping to answer to these questions without any
more information is a futile exercise. Indeed, except for
the first number (which seems rather large in comparison
to what it is supposed to cover), these expected losses do
not provide a context to assess whether they are expen-
sive or not.

To try to give proper answers to the questions, we com-
pute the probabilities that the agents end up spending
more than the expected losses should they avoid paying
these amounts. For Iron Man, calculate the sum10 of the
probabilities from 344 billion USD and on in the support
of the original random variable of aggregate claims. That
is, the sum of the entries in the range AD347:AD3742. The
result is 93.17%. This means that the probability that Tony
Stark spends less than a risk premium of 343.2994774 bil-
lion is of barely 6.83%. Will he agree then to pay only this
risk premium? Our guess is: no! In his own words, he is
a genius, billionaire, playboy, philanthropist. Besides, he
is the Iron Man... if there is a 6.83%-chance of losing less
than 343.2994774 billion, why not take it?

As for Mr. Wayne, we proceed analogously and com-
pute the probability that he ends up losing more than
a risk premium of 374.8962607 billion. To this end, we
add up11 all the probabilities from 350+374.8962607 bil-
lion USD to obtain that the probability that Bruce Wayne

10 Or more properly, the Riemann integral.
11 Or more adequately, “we compute the Riemann integral of”.

spends more than 374.8962607 billion USD equals 51.55%.
That is, the sum of the entries in the range AD728:AD3742
is 51.55%. (To see this, note that the first 350 billion would
be covered by Tony Stark, and it should be Batman the
one who pays the claims above this amount, and up to
one trillion dollars.) Will the greatest world detective agree
to pay this much? We think he would! After all, we
are talking about the one superhero who devised con-
tingency plans in case a member of the Justice League of
America went rogue (an event that occurred only in the
events narrated by Kirby et al. (2005); Waid et al. (2001);
Snyder et al. (2014) and Zdarsky and Jiménez (2022) –of
course, in the main continuity comics- during the last 85
years). What are the odds of that?!

The governmets of the world would definitely pay
the risk premium of 37.8 billion USD. That is, although
the probability that they end up spending more than
this much is of only 16.74% (the sum of the probabilities
corresponding to 1000+37.8 billion USD in the support
of the original random variable of aggregate claims), a
government would not risk a catastrophe with a margin
larger than 1%.

5. CONCLUDING REMARKS

This paper gives us a glimpse on how to use two tools
from the theory of risks to prevent a civil war among the
superheroes. Namely, the expectation of the random vari-
able of aggregate claims and the cumulative distribution
function. This is, of coruse, an overstatement for two
reasons: there are no superheroes in real life, and the ac-
tuarial techniques involved in the pricing of an insurance
plan only start where we conclude our manuscript. More-
over, we have oversimplified many of the assumptions
and methods used in a real problem. For example, our
stepsizes are huge, there is no statistical verification of
the distribution of the involved random variables, and
we substitute Riemann integrals for simple sums. How-
ever, we believe this paper represents a good practice
for students of actuarial sciences, for we profit from a
context familiar to many of our pupils to teach them the
basics of some important topics in the risk and probability
theories.

To complete the presentation in the same fashion as
the used to started it, we will leave the reader with a final
question. In the example developed here, the random
variable we used to model the frequency followed the
Poisson law. What if the Poisson parameter from the
frequency random variable is radiated with a Gamma
distribution? See figure 23, and appendices A and B.
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Figure 23 What if the Poisson parameter follows a
Gamma distribution? Image source: The TV series pro-
duced by Johnson (1978).

A. THE GAMMA RANDOM VARIABLE

Define the Gamma function as: Γ(α) :=
∫ ∞

0 xα−1e−xdx for
α > 0. The integration-by-parts formula to yields

Γ(α) = (α − 1) · Γ(α − 1) (11)

for α > 1, and Γ(1) = 1. Indeed, let u = xα−1 and
dv = e−xdx. Computing, respectively the derivative
and anti-derivative of these expressions, and substituting
them into

∫ ∞
0 udv = uv|∞0 −

∫ ∞
0 vdu yields

Γ(α) = −xα−1e−x
∣∣∣∞
0
+ (α − 1)

∫ ∞

0
xα−2e−xdx.

Since the last integral equals Γ(α − 1), this gives (11).
Note that, when α belongs to the set of integer numbers,
(11) becomes the recursive definition of factorial.

Now let α > 0 and θ > 0. A change of variable leaves
us with: ∫ ∞

0
xα−1e−x/θdx = θαΓ(α). (12)

Proof. To see this, let y := x/θ. Then dy = 1
θ dx. The

substitution of these expressions into the left-hand side
of (12) yields∫ ∞

0
(θy)α−1 e−yθdy = θα

∫ ∞

0
xα−1e−ydy = θαΓ(α).

The last equality holds by (11).

Define the Gamma density function12

fX(x) :=
1

θαΓ(α)
xα−1e−x/θ . (13)

for x > 0, with α > 0 and θ > 0. Note that fX is a density
function:

• The function fX(x) is positive for all x > 0.

Proof. To see the result, it suffices to see that the
two rightmost factors in the definition (13) are both
positive for all x > 0, while θαΓ(α) > 0.

• The integral
∫ ∞

0 fX(x)dx equals the unit.

Proof. This is an immediate consequence of (12). In-
deed, it suffices to note that (13) consists of the inte-
grand in the left-hand side of (12), and the expres-
sion in the right-hand side of (12).

As an illustration, we provide table 1 with the first ten
values of fX(x) for x > 0 with α = 10.5, θ = 2.5 and a
stepsize of 0.1.

x fX(x)

0.1 7.5044×10−19

0.2 5.2207×10−16

0.3 2.3617×10−14

0.4 3.4896×10−13

0.5 2.7928×10−12

0.6 1.5167×10−11

0.7 6.3026×10−10

0.9 6.3336×10−10

1 1.6557×10−09

■ Table 1 The first ten values of x and fX(x) for x > 0
with α = 10.5, θ = 2.5 and a stepsize of 0.1.

Figure 24 is a representation of the first ±1000 ordered
pairs obtained above with α = 10.5 and θ = 2.5.

We recommend that the reader fix the scale parameter θ
and change the shape parameter α. What if one does it the
other way around? Precisely in this context, if we fix θ

12 Note that there is a difference between the Gamma function, and the
Gamma density function.



Figure 24 Dispersion plot of x vs. fX(x).

at any given level and let α → ∞. The resulting density
would look a lot like the Gaussian bell (see, for instance
the chapter written by López-Barrientos et al. (2022)).

Let c > 0 be a given constant and fX(x) be the Gamma
density function defined in (13) with known shape pa-
rameter α > 0, and scale parameter θ > 0. The theorem
of change of variable (see section V.5 in the book by Mood
et al. (1974)) can help us find the density function of the
random variable Y := cX.

Theorem A.1. Let X be a Gamma random variable with shape
parameter α > 0 and scale θ. The random variable Y := cX
has a Gamma distribution with shape parameter α > 0 and
scale parameter cθ.

Proof. For y > 0,

fY(y) =
1

θαΓ(α)

( y
c

)α−1
e−y/(cθ) ·

∣∣∣∣ d
dy

y
c

∣∣∣∣
=

1
(cθ)αΓ(α)

yα−1e−y/(cθ).

This is the density function of a Gamma random variable
with shape parameter α and scale parameter cθ.

Let fX(x) be the Gamma density function defined
in (13) with known shape parameter α > 0, and scale
parameter θ > 0. The moment generating function of the
Gamma random variable X is given by

MX(t) = (1 − θt)−α. (14)

Proof. We make

MX(t) = E
[
etX
]
=
∫ ∞

0
etx fX(x)dx

=
∫ ∞

0
etx 1

θαΓ(α)
xα−1e−x/θdx

=
∫ ∞

0

1
θαΓ(α)

xα−1e−x( 1
θ −t)dx. (15)

Analogously to the proof of (12), we let y := x
(

1
θ − t

)
, so

that dy =
(

1
θ − t

)
dx. Substituting these two expressions

into (15) yields

MX(t) =
∫ ∞

0

1
θαΓ(α)

(
y

1
θ − t

)α−1

e−y 1
1
θ − t

dy

=
1

θαΓ(α)

(
1

1
θ − t

)α ∫ ∞

0
yα−1e−ydy

=
1

θαΓ(α)

(
1

1
θ − t

)α

Γ(α)

=
1
θα

(
1

1
θ − t

)α

=
1
θα

(
θ

1 − θt

)α

= (1 − θt)−α.

This completes the proof.

From (14), it is not hard to see that

EX = αθ, (16)

varX = αθ2. (17)

Theorem A.2. If Xi is Gamma-distributed with parameters
of shape αi > 0, and of scale θ > 0 for i = 1, ..., n, then

X1 + · · ·+ Xn

is Gamma-distributed with parameters of shape α1 + · · ·+ αn,
and scale θ > 0.

Proof. Since, for i = 1, ..., n, Xi is Gamma-distributed
with parameters of shape αi > 0, and scale θ > 0 then
MXi (t) = (1 − θt)−αi . Using the moment generating
function technique from chapter V.4 in the book by Mood
et al. (1974), we obtain

MX1+···+Xn (t) = (1 − θt)−α1 · · · (1 − θt)−αn

= (1 − θt)−(α1+···+αn).

This matches the moment generating function of a
Gamma distribution with parameters of shape α1 + · · ·+
αn, and scale θ > 0.
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From theorem A.2, we know that the distribution of
the sum of c > 0 independent and identically Gamma-
distributed random variables with parameters of shape
α > 0, and scale θ > 0 is Gamma with parameters of
shape cα, and scale θ > 0. Note that this does not con-
tradict theorem A.1, because cX ̸= X1 + · · ·+ Xc, even if
Xi ∼ Γ(α, θ) for i = 1, ..., c.

B. THE NEGATIVE BINOMIAL RANDOM VARIABLE

This bonus section illustrates the derivation of the Nega-
tive Binomial random variable from the Poisson random
variable. It presents an example used in the author’s class
on Risk Theory. Appendix B.2 in the book by Klugman
et al. (2019) presents a different (but swift) approach to
this and other random variables of the so-called class
(a, b, 0).

A swan lays a Poisson number of eggs with parameter
Λ, where Λ is a Gamma random variable with mean α/β
and variance α/β2. A cygnet hatches out of each egg
with probability p, regardless of the other eggs.

The mean of the number of eggs laid by the swan is α
β .

Proof. Let N be the number of eggs laid by the swan.
An application of the theorem of the nested expectation
results in EN = E[E(N|Λ)] = EΛ = α

β .

The variance of the number of eggs laid by the swan
is α(β+1)

β2 .

Proof. An invocation of the theorem of nested variance
yields (see, for instance, formula (2.2.11) in the book by
Bowers et al. (1997)):

varN = E[var(N|Λ)] + var[E(N|Λ)]
= EΛ + varΛ
=

α

β
+

α

β2

=
α(β + 1)

β2 .

The mass function of the number of eggs is Negative
Binomial with parameters α and 1

β+1 .

Proof. Considering that Gamma density function with
parameters of shape α and scale 1

β is given by

fΛ(λ) =
βα

Γ(α)
e−λβλα−1.

The theorem of total probability yields

P(N = n) =
∫ ∞

0
P(N = n|Λ = λ) fΛ(λ)dλ

=
∫ ∞

0

λn

n!
e−λ βα

Γ(α)
e−λβλα−1dλ

=
βα

Γ(α)n!

∫ ∞

0
λn+α−1e−λ(1+β)dλ.

The change of variable z := λ(1 + β) (with dz = (1 +
β)dλ) yields:

P(N = n) =
βα

n!Γ(α)

∫ ∞

0

(
z

1 + β

)n+α−1
e−z dz

1 + β

=
βα

n!Γ(α)

(
1

1 + β

)n+α ∫ ∞

0
zn+α−1e−zdz

=
βα

n!Γ(α)

(
1

1 + β

)n+α

Γ(n + α)

=
(α + n − 1) · · · α

n!

(
β

β + 1

)α ( 1
β + 1

)n

for n = 0, 1, ...

The expected number of cygnets that hatch out of the
eggs, given that the swan laid N eggs is pN.

Proof. Let K be the number of cygnets that hatch out
the eggs. We need to compute E(K|N). Since [K|N] is
a Binomial random variable with parameters N and p,
then E[K|N] = pN.

The expected number of cygnets that hatch out of the
eggs is α

β .

Proof. Let K be the number of cygnets that hatch out the
eggs. A new application of the theorem of the nested
expectation yields E[E(K|N)] = pEN = p α

β .
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